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This study employs multiple regression and artificial 
neural network modeling techniques to predict the 
coefficient of friction (C.O.F) and wear during a 
tribological operation. A reciprocating tribometer was 
used to conduct ball-on-flat tribological tests on steel-steel 
tribo-pairs, which were lubricated with the vegetable-
based jatropha oil containing molybdenum disulphide 
additives. A Full factorial design was used where the three 
input parameters (load, speed, and additive 
concentration) were varied at three levels, and hence a 
total of 27 experiments were performed. The ANN and 
multiple regression techniques were applied to predict 
C.O.F and wear, and the results were subjected to 
experimental validation. The ANN models were found to 
be the best among all models predicting the C.O.F and 
wear with high accuracy followed by the second-order 
regression models. Further mean square error (MSE), 
Mean absolute percentage error (MAPE), and coefficient 
of determination (R2) confirms the adequacy and 
reliability of ANN models over the regression models. The 
low MSE (0.002510 and 0.001681) and MAPE (2.633 and 
2.521), and high R2 (0.995575 and 0.992261) of ANN 
models clearly indicate that the ANN models are capable 
of predicting C.O.F and wear with more accuracy and 
hence can be utilized for other works as well. 
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1.0 INTRODUCTION 
Tribology is the science and engineering of interacting surfaces that are in relative motion with 

each other. It comprises the processes of friction and wear, which are sometimes undesirable and 
result in the wastage of energy and curtailment of the life of material (Woma et al., 2019; Guo et 
al., 2020). Lubrication is the sure-shot-cure of this universal obstacle in order to restrict the 
amount of friction and wear. Lubrication can enhance the life of the machine components, save 
energy, and a huge amount of money to the industries (Sapawe et al., 2014; Kotia et al., 2018). 
Petroleum-based oils have dominated the lubricant market over the years for most of the 
industrial applications due to their good lubricating performance and ease in availability (Yunus 
et al., 2020; Talib et al., 2019). But they contribute to environmental pollution during or after their 
operation. Hence there is a dire need to replace the hazardous petroleum-based lubricants with 
environmentally friendly lubricants, and this void can be filled with vegetable oils (Syahrullail et 
al., 2011; Salleh et al., 2019). Amid growing environmental concerns, the vegetable oil-based bio-
lubricants are acquiring more attention day by day. Their use is driven by their environmentally 
friendly and non-toxic nature, biodegradability, abundant availability, and regulations of the 
government on using petroleum-based oils (Rao et al., 2018). With the growing use of bio-
lubricants, the cost of mineral oils is expected to fall (Cecilia et al., 2020). The vegetable oils are 
stable to extreme temperature conditions and oxidation due to the presence of anti-aging agents. 
They can mitigate the over-dependence on petroleum-based fossils (Owuna, 2020). They also 
have some unparalleled lubricating properties like high viscosity and viscosity index, low pour 
point, high flash point, etc (Farhanah and Syahrullail, 2015) However, the vegetable oils are 
having a few shortcomings which confine their direct use as a lubricant. These shortcomings can 
be removed, and the lubricating properties of vegetable oils can be amended by adulterating them 
with the proper additives. Additivation imparts special features to the vegetable oils and 
improves their physical properties (Chan et al., 2018). The plant jatropha has its inception from 
American tropical regions and is now distributed mostly in Asia and Africa. Over the years, the oil 
has been extracted from its seeds and used for lubrication and many other purposes 
(Moniruzzaman et al., 2016). Jatropha oil-based bio-lubricant has low pour point, high viscosity, 
high viscosity index and good stability at high temperatures. This makes it a suitable candidate 
for bio-lubricant applications (Attia et al., 2020). Koshy et al., (2015) reported that the addition of 
MoS2 nanoparticles improved the thermo-physical and tribological properties of the coconut oil. 
The frictional and anti-wear characteristics of jatropha oil were boosted by MoS2 additives 
(Hanief and Mushtaq, 2020). 

Theoretical modeling is an essential tool nowadays and various models are being developed 
to predict various parameters. The accuracy of these predictions can be endorsed by comparison 
with the experimental data (Radovanovic and Madic, 2010). Hanief and Wani, (2016) developed 
ANN and regression models to predict the surface roughness during the turning of red brass. It 
was concluded that both the models can be used to predict roughness and ANN was found to be 
more accurate than the regression model. The ANN and regression models were utilized for the 
prediction of cutting forces in the turning of red brass. It was reported that the ANN model can 
predict the cutting forces more accurately than the regression model (Hanief et al., 2017). The 
surface roughness for running-in wear was predicted using the Gauss-Newton algorithm and 
ANN. The results suggested that the ANN produced slightly more accurate results (Hanief and 
Wani, 2015). The modeling of friction and wear has been a hot research topic over the years. The 
wear is a very complex phenomenon, and it is very difficult to develop a model for its accurate 
prediction, yet some authors have used an innovative ANN modeling for this purpose (Capitanu 
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et al., 2019). The kinetic friction of ice was modeled and validated with the experimental data 
(Makkonen and Tikanmaki, 2014). Hegadekatte et al., (2008) presented a predictive model for the 
prediction of wear in tribometers. Gyurova and Friedrich, (2011) used the experimental data from 
a pin-on-disc testing machine for the training of the ANN. The trained ANN was found to predict 
the friction and wear with high accuracy. 

This paper investigates the accuracy of ANN and regression models in predicting the friction 
and wear during a tribological sliding operation by comparison with the experimental data. The 
ball-on-flat sliding tests were conducted on a reciprocating tribometer and the Coefficient of 
friction between the tribo-pair was noted down. The wear of the material was calculated in terms 
of weight loss. Multiple-regressions and ANN models were developed and utilized for the 
prediction of the coefficient of friction and wear. The predicted results were plotted against the 
experimental results. The comparison gave the impression that both the models can predict the 
coefficient of friction and wear very effectively, with the ANN model being more accurate than the 
regression models. 

 
 

2.0 EXPERIMENTAL PROCEDURE 
The full factorial design of experiments (DOE) was used to select the points for the evaluation 

of the response. A total of 27 experiments were completed on a reciprocating tribometer with a 
steel-steel tribo-pair. The experimental results of some of the tests in this paper are already 
presented in our previous work (Mushtaq and Hanief, 2021). Then more tests were executed and 
added to complete a design of 27 experiments for modeling purposes. The tribo-pairs used were 
EN31 steel and 52100 chromium steel balls whose elemental compositions are given in Table 1. 
The steel slab was polished with silicon carbide emery papers of different sizes until a proper 
surface finish without scratches was obtained. The experimental setup of the tribometer is shown 
in the Figure 1. It consists of a reciprocating arm which also accompanies the ball holder. The ball 
holder grips the ball with the help of screws and is the moving part of the tribo-pair. While as, the 
steel workpiece is held fixed and stationary and the ball is pressed against it as the arm slides. The 
point contact between the steel slab and the steel ball is lubricated to assess the lubricating 
potentials of the oil.  

Jatropha oil added with 20% glycerol was used as a base lubricant and the micro-sized MoS2 
as its anti-friction additive, which were retrieved from a local supplier in India. Glycerol was 
added in order to enhance the viscosity of jatropha oil and improve its lubricity. The MoS2 was 
added to the base oil in three weight percentages (0.5, 1, and 2), and the prepared blends were 
placed in the ultrasonicator for enough time to allow proper mixing.  

The three parameters were varied with three different values during the testing, viz, load (L), 
speed (S), and MoS2 concentration (C). All the parameters were fed through the software system 
attached to the equipment, and the coefficient of friction at various operating conditions was 
evaluated. The wear scars were produced on the steel slab after each test. The steel slab was 
weighted on a highly accurate weighing machine before and after every test and the wear was 
calculated in terms of the weight loss of the material. 
 

Table 1: Elemental composition (%) of the tribo-pair. 
 C Cr Mn Si Su P Mo 

EN-31steel 1.15 1.5 0.5 0.3 0.022 0.017 0.02 
52100 Cr Steel 1.1 1.6 0.4 0.35 0.015 0.023 0.1 
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Figure 1: Experimental setup of tribometer. 

 

2.1 Multiple-Regression Modeling for Coefficient of Friction and Wear 
Multiple regression technique is mostly used for modeling experimental or categorical data 

(Reddy et al., 2008). Therefore, it can be used in predicting the coefficient of friction and wear.  In 
this study, two regression models are developed that relate the response variables (coefficient of 
friction and wear) and the predictor variables (Load (L), Speed (S), and concentration (C)). In 
order to predict the wear (W) and the coefficient of friction (C.O.F), the regression models can be 
written as 

 

𝐶. 𝑂. 𝐹  =  βo + β1.L + β2.S + β3.C         (1) 
𝑊  =  βo + β1.L + β2.S + β3.C         (2) 
𝐶. 𝑂. 𝐹  =  βo + β1.L + β2.S + β3.C + β4.L2 + β5.S2 + β6.C2 + β7.L.S + β8.L.C + β9.S.C   (3)                                                                                                                                                    
𝑊  =  βo + β1.L + β2.S + β3.C + β4.L2 + β5.S2 + β6.C2 + β7.L.S + β8.L.C + β9.S.C   (4) 
 

Where equations (1, 2) and (3, 4) represents the first order and second order regression models 
for the Coefficient of friction (C.O.F) and Wear respectively. While as β1, β2, to β9 are the 
coefficients that are determined using suitable methods. 

 

2.2  Wear and Coefficient of Friction Prediction Strategy Using Network (ANN). 
The Artificial Neural Network (ANN) is generally used for forecasting, control, data 

compression, and for other applications such as medicine and power systems as well (Asilturk et 
al., 2011). In a typical ANN architecture, neurons are arranged into three types of layers: an input 
layer, hidden layer(s) and output layer. The input layer receives inputs from the 
user/environment and after appropriately weighted and summed the output of the input layer is 
transmitted to the hidden layer(s) that further process the input data, eventually the output layer 
is invoked, and the result is communicated to the user/environment. The number of hidden layers 
and the number of neurons in each affect the output, the optimum numbers are usually chosen 
using hit and trial. The ANN structure used for the modeling and prediction of C.O.F and Wear is 
shown in figure 2. A program was written in Matlab® for the ANN model and trainbr and ‘logsig’ 
and ‘purelin’ functions were used for learning/training. Moreover, the data were normalized in 
order to avoid over-fitting or under-fitting of the network by using equation 5. 
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𝑦𝑛𝑜𝑟𝑚 = [𝑦𝑛𝑜𝑟𝑚(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) + 𝑦𝑚𝑖𝑛] − 𝑦𝑚𝑖𝑛/(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) (5) 

 
Where  
𝑦𝑛𝑜𝑟𝑚= scaled version of value y 
𝑦𝑚𝑎𝑥= Maximum value of data 
𝑦𝑚𝑖𝑛= Minimum value of data 
 

 
Figure 2: ANN architecture. 

 
 
3.0 RESULTS AND DISCUSSION 

The coefficient of friction and the weight loss (wear) values collected as a result of the 
experiments by varying three parameters are compiled in Table 2. Generally, it was observed that 
the coefficient of friction increased by increasing the load following the law of mechanics F=µR 
(Najar et al., 2016). However, there were some exceptions where the coefficient of friction and 
weight loss were lower at 100N than 50N as given in the Table 2. The coefficient of friction and 
wear got reduced by increasing the speed (Rpm). This may be due to the fact that at lower speeds 
the thickness of the lubricating film is low. At higher speeds, the film becomes thicker which 
restricts the metal-to-metal contact and improves the frictional characteristics. The minimum 
coefficient of friction (0.0264) was observed at the conditions of 2% MoS2 concentration, 100N 
load and 1200 Rpm speed. 

The wear scars produced on the EN-31 steel sample were examined to study the wear pattern. 
At lower loads, adhesive wear was observed to be the dominant mechanism. However, as the load 
was increased, a shift in the wear mechanism was recorded. At higher loads, a mixture of abrasive 
ploughing and mild adhesion wear mechanism was found on the steel scars. More adhesive pits 
and deep furrows were observed at higher loads. The Raman spectroscopic analysis of the steel 
surface before and after the sliding was conducted as shown in the Figure 3. In figure 3(a), there 
are no major peaks observed as the surface of the steel is clean from any impurity. However, after 
sliding, two major peaks can be observed at 385 cm-1 and 409 cm-1 (as shown in Figure 3b) which 
proves the presence of the MoS2 micro-particles on the wear scar.  
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Table 2: Experimental data at different load, speed, and additive concentrations. 
S. No. MoS2 Concentration 

(C) in wt.%  
Load (L) in 
Newtons 

Speed (S) in 
Rpm 

C.O.F  Weight Loss 
(grams) 

1 0.5 50 1000 0.0422 0.0003 

2 1 50 1000 0.0389 0.0004 

3 2 50 1000 0.0351 0.0003 

4 0.5 100 1000 0.0623 0.0002 

5 1 100 1000 0.0298 0.0001 

6 2 100 1000 0.0296 0.0001 

7 0.5 150 1000 0.0713 0.0003 

8 1 150 1000 0.0318 0.0003 

9 2 150 1000 0.0299 0.0002 

10 0.5 50 1100 0.0416 0.0003 

11 1 50 1100 0.0371 0.0003 

12 2 50 1100 0.0334 0.0002 

13 0.5 100 1100 0.0612 0.0002 

14 1 100 1100 0.0280 0.0001 

15 2 100 1100 0.0275 0.0001 

16 0.5 150 1100 0.0693 0.0002 

17 1 150 1100 0.0307 0.0003 

18 2 150 1100 0.0288 0.0002 

19 0.5 50 1200 0.0402 0.0002 

20 1 50 1200 0.0360 0.0003 

21 2 50 1200 0.0325 0.0002 

22 0.5 100 1200 0.0593 0.0001 

23 1 100 1200 0.0273 0.0001 

24 2 100 1200 0.0264 0.0001 

25 0.5 150 1200 0.0674 0.0002 

26 1 150 1200 0.0289 0.0002 

27 2 150 1200 0.0277 0.0001 
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Figure 3: Raman spectrum of steel surface: (a) before sliding (b) after sliding. 

 
3.1  Multiple-Regression Results 

The experimental data shown in Table 2 was used to build multiple regression models for the 
coefficient of friction and wear. The coefficients βo, β1, to β9 are estimated using Matlab®. 
Accordingly, the equations for the first-order fitted model and second-order fitted model can be 
written as follows:  
 

C.O.F  = 0.0682 + 0.0001.L - 0.00000001.S - 0.0158.C (6) 
W  = 0.0007389 - 0.0000006.L - 0.0000004.S - 0.0000413.C    (7) 

C.O.F  = 0.0984 + 0.0002.L - 0.0000001.S - 0.0811.C + 0.00000001.L2 + 0.000000.S2 + 
0.0322.C2 - 0.0000001.L.S - 0.0002.L.C + 0.000001.S.C 

(8) 

W  = 0.5222 - 0.0106.L + 0.0007.S + 0.0254.C + 0.0001.L2 - 0.0000001.S2 - 
0.0593.C2 + 0.00000001.L.S - 0.0002.L.C + 0.0001.S.C 

(9) 

   
The concentration is the most dominant factor for both wear and coefficient of friction 

followed by load and speed respectively. Figure 4(a,b) and Figure 5(a,b) show the comparison of 
experimental and predicted data for the first-order regression model and second-order 
regression model of wear and coefficient of friction respectively. These figures also depict a strong 
correlation between predicted variables and response variables. However second order 
regression models yield a better fit as compared to first order regression models. The adequacy 
of the regression model was evaluated using the statistical parameters of mean square error 
(MSE), mean absolute percentage error (MAPE), and coefficient of determination (R2), and the 
same is shown in Table 3. The MSE of the second-order regression model is low as compared to 
first-order regression model while R2 of the second-order regression model is high as compared 
to the first-order regression model indicating high accuracy of second-order regression models 
as compared to first-order regression models. 

MSE=1/𝑁 ∑ (xi − yi)2𝑁

𝑖=1
        (10) 
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MAPE=1/𝑁
∑ (xi−yi)

𝑁

𝑖=1

(xi)
× 100        (11) 

R2=1 − (
∑ (xi−yi)2𝑁

𝑖=1

(xi)2 )          (12) 

 
Where xi is the actual output and yi is the predicted output and N is the number of data points. 
 

 
Figure 4:  First-order regression models: (a) coefficient of friction and (b) Weight loss. 

 

 
Figure 5: Second-order regression models: (a) coefficient of friction and (b) weight loss. 

 
3.2 ANN Results 

The results of ANN models are shown in Figure 6(a,b). The data set of the experimentation 
consists of 27 data points out of which 21 data points were used for training the network and 6 
data points selected randomly were used for the testing. It can be clearly seen that ANN yields the 
best fit with both the training and testing datasets of friction and wear and is shown in Figure 7 
and Figure 8. The results obtained were compared using statistical methods. The coefficient of 
determination (R2) and MAPE as shown in Table 3 are also in acceptable ranges and depict the 
high accuracy of ANN models as compared to regression models. 
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Figure 6: Results of ANN modeling for: (a) coefficient of friction and (b) weight loss. 

 
A full factorial plan of experimentation is applied to look for the effects of load, speed, and 

additive concentration on the friction and wear during tribological sliding. After each tribological 
sliding operation, the measurements of friction and wear were observed. Multiple linear 
regression and artificial neural network models were used to predict the coefficient of friction 
and wear during tribological sliding. The results of regression and ANN models are compared in 
Table 3. The results obtained from these models are found close to the experimental results. So, 
the proposed models can be used to predict the coefficient of friction and wear during tribological 
sliding operation. Nonetheless, as shown in Table 3, ANN produces better results as compared to 
regression. Further, it should be also noted that the ANN model is very good at the training stage 
but not as good at the test data. However, the accuracy can be enhanced by doing more 
experiments and providing more tests for training the program. 

 

 
Figure 7: ANN model output for C.O.F representing training, test and combined data. 
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Table 3: Comparison of regression and ANN models. 
 

Mean Square Error 
(MSE) 

Mean Absolute 
Percentage Error 

(MAPE) 

Coefficient of 
Determination (R2) 

 C.O.F  Wear C.O.F  Wear C.O.F  Wear 
First-order 
regression 

1.021 1.326 14.79 15.72 0.81   0.73 

Second-order 
regression 

0.016552 0.029441 7.441 7.728 0.97701 0.96932 

ANN 0.001681 0.002510   2.521 2.633 0.992261 0.995575  
 

 
Figure 8: ANN model output for wear (weight loss) representing training, test and combined data. 

 
 
4.0 CONCLUSION 

In this paper, the multi-linear regression and ANN-based models were developed for the 
estimation and prediction of the coefficient of friction and wear during tribological sliding 
process. Two regression models were developed and based on the statistical parameters of mean 
squared error and coefficient of determination; it was observed that the second-order model 
yields the best estimation and prediction results than the first order. Furthermore, it was also 
observed that the ANN-based model gives more accurate results than the multi-linear regression 
models. Also, the advantages of ANN such as simplicity, speed, and capacity of learning as 
compared to regression, make it a powerful tool for predicting the coefficient of friction and wear 
during tribological sliding. 
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