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The demand for alternative fuels has seen an exponential 
rise due to increased fuel prices and environmental 
impacts. In addition to being a source of energy, these are 
also frequently used as a lubricant due to their plentiful 
availability and low cost. Using the four-ball tester, this 
research investigates the wear and friction properties of 
waste tire pyrolysis oil (WTPO) as a lubricant. The 
tribological characteristics were compared with the diesel 
and biodiesel fuel. The experiment was performed on 
ASTM D2266 standard during 3600 s on a load of 40 kg, 
constant speed of 1200 rpm and with a temperature of 
27 °C for all fuels. The wear scar diameter was calculated 
using an optical microscope and then examined through a 
scanning electron microscope. The coefficient of friction of 
WTPO is 22.3% and 10.6% lower than the diesel and 
biodiesel fuel, respectively. The surface morphology of the 
WTPO displays the smaller worn surfaces than the 
biodiesel fuel. Overall, the tribological performance of 
WTPO as a lubricant is observed to be better than the 
other samples due to its low coefficient of friction and 
worn surfaces. 

 
 
1.0 INTRODUCTION 

Because of the fast depletion of fossil fuels (Rashid et al., 2021), climate change (Sher et al., 
2020), economic issues, and energy demand increase (Murugesan et al., 2009; Dhar et al., 2014; 
Qaisrani et al., 2021; Yaqoob, Teoh, Goraya, et al., 2021), alternative fuel have proliferated in a 
diesel engine (Yaqoob, Teoh, Sher, Ashraf, et al., 2021). Alternative fuels (Food based) such as 
soybean, rapeseed, palm oil, sunflower, and others, have been criticized around the world for 
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deforestation, particularly the food vs fuel issue. As a result, it is suggested that the conversion of 
food to fuel will result in a global food crisis (Lam et al., 2009). As a result, waste to fuel conversion 
offers significant potential for producing alternative fuels, reducing the need for conventional fuel, 
and reducing waste (Duan et al., 2015; Yaqoob, Teoh, Sher, Jamil, Murtaza, et al., 2021). Solid 
waste is a big issue that causes environmental and financial issues (Mokhtar et al., 2012). Open 
disposal of tires produces a serious environmental issue and contributes to climate change and 
global warming (Al-Juboori et al., 2020; Ameen et al., 2021; Verma et al., 2018; Zhang et al., 2019). 

The EAMA (European Association of Automotive Manufacturers) predicts that 1.35 billion 
road vehicles are present on the world road (ACEA, 2016), with 2 billion anticipated for 2035 
(Voelcker, 2014). According to reports, 1 billion waste tires are wasted each year, with an 
estimated four billion in storage and dumpsites around the world (Shulman, 2004). The waste 
tires are processed to yield 49% weight oil, 44% weight char, and 7% weight pyrolytic gases (Li 
et al., 2016). Following that, ~44.5% of WTPO can be purified into fuel (M.Z.H. Khan, Md. Ikram 
Hossain, Pobitra Kumar Halder, Md. Rafiul Hasan, 2016). 

One of the principal waste tire compounds is WTPO, which is created during the pyrolysis of 
waste car tires. The potential use of TPO in boilers (García-Contreras et al., 2015), furnaces 
(Karagoz et al., 2020; Pinto et al., 2019; Pote et al., 2019; Solmaz et al., 2018), and CI engines as a 
renewable fuel (Sharma et al., 2015) has piqued the interest of researchers. WTPO has a similar 
kinematic viscosity, calorific value, and density to DF, but its sulfur concentration is substantially 
higher (Singh et al., 2017). However, one disadvantage of TPO appears to be that it can be mixed 
with diesel up to 90%. Tire pyrolysis oil can be utilized in diesel engines to operate in dual-fuel 
mode (Murugan et al., 2018). Without modification, a 10% TPO fuel blend in diesel fuel may be 
utilized in the diesel engine (Yaqoob, Teoh, Jamil, et al., 2021). 

On a four-ball tribometer, Yaqoob et al. (Yaqoob et al., 2020) examined the tribological 
properties of tire pyrolysis oil and its mixture with palm oil biodiesel. BT10 (90% biodiesel-10% 
TPO) outperforms BT20 (80% biodiesel-20% TPO), TPO, and biodiesel in terms of tribological 
performance. The lubricity of B30 + ethanol-gasoline declines, whereas friction and wear 
improve, according to Mujtaba et al. (Mujtaba et al., 2020). The smallest wear scar diameter 
(WSD) was found in B30 + dimethyl carbonate (DMC), and the maximum performance was found 
in B30 + nanoparticle TiO2, which had the lowest wear scar diameter (WSD) and coefficient of 
friction (COF). TPO’s tribological properties and their combination with diesel fuel were 
investigated by Yaqoob et al. (Yaqoob, Teoh, Sher, Jamil, Nuhanović, et al., 2021). The DT10 (90% 
diesel-10% TPO) outperforms the DT20, TPO, and diesel fuel in terms of wear and friction. Plastic 
pyrolysis oil exhibited an excellent lubricity property in terms of lowest friction coefficient as 
compared to polyalphaolefin 8 and trimethylpropane  trioleate (Sharul et al., 2020). The 
tribological properties of the jatropha oil + graphene nanoparticles were examined and the best 
results were shown at graphene 0.5% which lessened the rate of wear by 43.7% and friction 
coefficient by 44% as compared to jatropha oil (Mushtaq et al., 2021). A fourball tribometer was 
used to test tribological properties at a load of 785 N. When compared to SAE-40, 10% cotton bio 
lubricant added to the blend resulted in the lowest friction and wear, while  greater than 10% 
volume of cotton bio lubricant in the blend significantly increased wear and friction, as measured 
by both HFRR and four-ball tribometer (Gul et al., 2020). 

With rapid industrialization and technical growth, fuel provided energy and served as a 
lubricant (Chauhan et al., 2012; Fayaz et al., 2021). The lubricity of the engine has a significant 
impact on its longevity. The lubricity of the engine minimizes friction between moving parts, 
resulting in lower friction strength and energy consumption (Tung et al., 2004). Fuel input 
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temperature (>60 °C) determines engine fuel lubrication (Sarvi et al., 2008). To our knowledge, 
there is a substantial amount of literature on the engine performance of tire oils in diesel engines. 
(Hamzah et al., 2019; Hürdoğan et al., 2017; Karagoz et al., 2020; Pinto et al., 2019; Pote et al., 
2019; Sharma et al., 2015; Solmaz et al., 2018; Thangavelu S et al., 2020; Vihar et al., 2015), 
however, no technical investigation of WTPO's tribological properties has been done. 

To focus on the gap, a recent study evaluates the wear and friction properties of waste tire 
pyrolysis oil (WTPO), diesel (DF), and biodiesel (BD) under various testing conditions. This 
research looks into WTPO, DF, and BD. The fourball Tester (FBT) is used in this study to 
investigate the experimental examination of friction and wear characteristics of various fuels. 

 
 

2.0 MATERIALS AND METHODS 
 
2.1 Tested Fuels 

Automobile tires are stripped of steel wires and fibers before being shredded into little bits. In 
a chamber, the pyrolysis method was employed on discarded tire fragments.  

Malaysian industries provided the waste tire pyrolysis oil, biodiesel, and diesel. In this 
experiment, the WTPO, DF, and BD are used as test fuels, and the important physical properties 
are shown in Table 1. 

 
Table 1: The physical properties of the different fuels. 

Tested Fuels 
Density (g/l) Kinematic viscosity (cSt) 

15 °C 40 °C 
WTPO 927 4.74 

DF 845.3 3.36 
BD 875.5 4.45 

 
 
2.2 Test System 

A fourball tester was utilized in this investigation to support develop and examine novel 
lubricants in tribology. The sample was analyzed in four balls; however, three balls were held in 
the fuel sample tube and one ball rotated at the top end by a constant set of electric motor 
spindles. Figure 1 shows a diagram of the FBT as well as the experimental setup. After the fuel tub 
had been examined, fuel was placed in it. The fourball tester's features are listed in Table 2. 
The frictional torque was calculated using an adjustable arm and the friction recording tool's 
spring, and the load was applied to the bottom-locked balls using the lever. Steel carbon-
chromium balls were used in this experiment, and the characteristics of the balls are provided in 
Table 3.  
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Figure 1: Fourball tester. 

 
Table 2: Specifications of the fourball tester (Yaqoob et al., 2020). 

Specifications Details Accuracy 
Model Make: DUCOM   
Software Winducom 2010  
Spindle Speed  300-3000 rpm 1 
Temperature of Oil 25-100 °C 0.5 
Load (Maximum)  10,000 N 0.5 
Scar range  100–4,000 μm 0.5 
Diameter of the ball 12.7 mm  
Power  380/50/3/2000 (V/Hz/VA)  

 
2.3. Test Process 

For the four-ball test, acetone was used to clean the oil cup and the four steel balls. The 3 steel 
balls were tightly tightened into the oil tube and the test oils were poured into the oil tub until the 
three steel balls were fully immersed. A single steel ball is collected and attached to the tool. In 
the instrument, an oil bath was introduced, and a controlled wire was attached. For this 
experiment, the ASTM D2266 standard was applied, with a fixed speed of 1200 rpm, 40 kg 
weights, and 27 °C oil temperature of 3600 seconds. Several parameter values have been 
computed and reviewed by the program. The requirements for Fourball testing are shown in 
Table 4. The three balls in a cup were collected after the conclusion of the test to be used for the 
optical microscope and the SEM analysis to determine the wear scar diameter. 
 
2.3.1.  Friction Analysis 

The mean friction coefficient was measured using the software "Winducom 2010," and 
equation (1) was used to calculate it. The frictional torque is determined using the load cell (IP-
239 standard, 1986). Habibullah et al. (Habibullah, H.H. Masjuki, et al., 2015), Mosarof et al. 
(Mosarof et al., 2016), and Zulkifli et al. (Zulkifli et al., 2014) all employed the same technique. 
Where r is 3.67 mm, that is the distance between the axis of rotation and the contact surface center 
on the lowest balls, T is frictional torque (Nm), W is load (N) and μ is coefficient of friction.  
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Table 3: Features and operating conditions of the experiment. 
Test Conditions Details 
ASTM Standard D2266 
Applied Load 40 kg 
Duration 1 hour 
Fuel Temperature  27 °C 
Spindle Speed 1200 rpm 
Material of the ball Carbon–chromium steel (SKF) 
Material hardness  62 HRc 
Diameter of the Ball 12.7 mm 
Material surface roughness  0.1 C.L.A μm 

 
2.3.2.  Wear Analysis 

An optical microscope would be used to analyze the wear scar diameter (WSD) on steel balls 
with a resolution of 0.01 mm, according to ASTM D4172. The optical microscope made use of 
computer software to capture the image of the wear scar. Furthermore, the software is used to 
compute the WSD, therefore this operation is repeated for each fuel test. 
 
2.3.3.  Flash Temperature Parameter Analysis 

Flash Temperature Parameter (FTP) is measured by using the equation (2). In which F is Load 
(kg) and D is average wear scar diameter (mm). 
 
 
 
 
3.0 RESULTS AND DISCUSSION 
 
3.1.  Friction Analysis 

Because of the experiment's time gap, the recorded friction behavior was not stable at the 
beginning of testing. The stabilized friction behavior, also called steady-state condition, was 
recorded after a few seconds. The average friction coefficient of the different tested fuels in the 
test duration (3600 s) is shown in Figure 2. 

The average coefficient of friction of diesel fuel is higher than that of other test fuel samples. In 
comparison to diesel fuel and biodiesel, the WTPO has a stronger friction protection behavior. 
WTPO shows a 22.3% and 10.6% lower coefficient of friction than the diesel and biodiesel fuel, 
respectively. 

The viscosity of the lubricating oil is the key component that impacts the film thickness 
dividing the surfaces and, as a result, defines the friction behavior at the boundary lubrication 
condition as the adopted testing conditions (Zulkifli et al., 2016). The significance of considered 
viscosity of lubricating oil, high temperatures had been reported at the fourball contact 
configuration, increasing average friction coefficient, and decrease of oils viscosity. The biodiesel 
has a better coefficient of friction, which is mostly owing to its increased viscosity and oxygen 
content (Wain et al., 2005). 

𝜇 =
𝑇 × √6

𝑟 × 3 ×𝑊
 (1) 

FTP =
𝐹

𝐷1.4
 (1) 
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Figure 2: Waste tire pyrolysis oil, diesel fuel, and biodiesel coefficient of friction performance. 

 
3.2.  Wear Analysis 

Metal-to-metal contact happens under the conditions of boundary lubrication, causing 
interacting tribo-pairs to wear. Figure 3 depicts the wear behavior of all of the fuels studied. 
WTPO exhibits lower antiwear characteristics as compared to DF and BD. WTPO exhibits lower 
antiwear characteristics as compared to DF and BD. The WSD of WTPO was 16.6% and 3.9% 
respectively higher relative to diesel and biodiesel. But at high loads, pure TPO shows better 
antiwear characteristics (Yaqoob et al., 2020; Yaqoob, Teoh, Sher, Jamil, Nuhanović, et al., 2021). 
The high sulfur concentration of WTPO reduces wear, and its combination with diesel improves 
lubricant properties (Nikanjam et al., 1993; Yaqoob et al., 2020). Low sulfur concentration in 
diesel creates lubricity issues, although Mello et al. (Silva e Mello et al., 2014) discovered that 
increasing sulfur concentration improves lubricity. Tire Pyrolysis Oil has a better capacity of load 
carrying, implying that it can bear bigger loads and be employed in high-pressure conditions 
(Yaqoob et al., 2020). The amount of oxygen in biodiesel will be reduced due to wear and friction 
between the surface contacts (Mosarof et al., 2016). In this manner, thermal energy was generated 
in sliding the interacted surfaces, which the protective layers were able to reduce, and lubricity 
was improved (Knothe et al., 2005). The stability of the lubricating layer between rubbing 
surfaces is strongly affected by speed, applied load, fluid viscosity, nanoparticle dispersion, fuel 
fatty acid content, and temperature (Maleque et al., 2000). 
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Figure 3: Waste tire pyrolysis oil, diesel fuel and biodiesel wear scar diameter. 

 
3.3.  Flash Temperature Parameter Analysis 

Figure 4 depicts the impact of various fuel samples on flash temperature characteristics at 
various temperatures. As the temperature of the fuel rises, the parameter of the flash temperature 
of various fuels drops.  
 

 
Figure 4: Waste tire pyrolysis oil, diesel fuel, and biodiesel flash temperature parameter. 

 
The wear scar diameter is inversely proportional to the flash temperature parameter. WTPO 

displays the lowest flash temperature parameter 28.8 °C as compared to diesel fuel and biodiesel. 
Diesel fuel shows the highest FTP 35.7 °C. Higher parameters of flash temperature levels improve 
the efficiency of lubrication, while lower parameters of flash temperature levels cause films of 
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lubrication to break down (Habibullah, Masjuki, et al., 2015). The oxidation process has been 
shown to have an impact on lubricating performance (Tsuchiya et al., 2006). When compared to 
diesel fuel, WTPO has a larger oxygen concentration (Verma et al., 2018). Furthermore, the 
oxidation process improves lubricating efficiency in a relatively short amount of time (Tsuchiya 
et al., 2006). 
 
 
3.4  SEM ANALYSIS 

A scanning electron microscope was used to describe the damaged interface of the tested balls 
to better understand the antiwear behavior of the oil samples (SEM). SEM was used to examine 
the worn surfaces. SEM micrographs of damaged edges of investigated balls for tested fuels are 
shown in Figure 5(a)-(i). The micrographs of the WTPO (Figure 5(a)-(c) exhibit more adhesive 
wear and a rough surface than those of the DF (Figure 5 (d)-(f)). Similarly, Figures 5(d)-(f) 
indicate the least amount of material removal compared to Figures 5(g)-(i) and 5(a)-(c). 

The oxidation process increases the performance of lubricating, whereas the higher sulfur 
concentration increases anti-wear qualities. TPO has a higher oxygen and sulfur concentration 
(Tsuchiya et al., 2006; Verma et al., 2018; Wain et al., 2005). The interaction between the treated 
material and the additives in the given atmosphere causes tribofilm production. On the tested 
surfaces, Tribofilm is also known as protective film (Chou et al., 2010) (Viesca et al., 2011). 

 
 
CONCLUSION 

The tribological performance of waste tire pyrolysis oil, diesel fuel, and biodiesel is determined 
using a fourball tester in this experiment. The ASTM D2266 standard was used to test all of the 
fuels for 3600 seconds at 40 kg load, fixed speed (1200 rpm), and 27 °C temperature. The 
tribological performance of WTPO was in comparison to that of diesel and biodiesel fuel. The four-
ball tribometer is a popular research tool in lubricant manufacturing for developing lubricants. 
As a result, it's used to investigate the tribological performance of a DF, biodiesel and WTPO. 
WTPO displays a 22.3% and 10.6% lower coefficient of friction than the diesel and biodiesel fuel 
respectively. WTPO exhibits lower antiwear characteristics as compared to DF and BD. The WSD 
of WTPO was 16.6% and 3.9% respectively higher relative to diesel and biodiesel. WTPO displays 
the lowest flash temperature parameter 28.8 °C as compared to diesel fuel and biodiesel. Diesel 
fuel shows the highest FTP 35.7 °C. The WTPO and DF fuels had less metal extrusion than the BD 
fuel, according to SEM micrographs. Finally, it is concluded that DF has the best results in terms 
of wear, whereas WTPO has the best results in terms of friction. As a future recommendation, the 
purification of the WTPO by using the distillation process and blend with diesel/biodiesel can 
exhibit better antiwear characteristics. 
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Figure 5: SEM analysis of worn surfaces of the tested steel balls. 
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