
Jurnal Tribologi 38 (2023) 141-159 

 

  
 

 

Received 6 January 2023; received in revised form 20 March 2023; accepted 23 June 2023. 

To cite this article: Dinesh et al. (2023). Prediction of abrasive wear behavior of the poly-tetrafluoroethylene material 

using adaptive neuro fuzzy interface systems. Jurnal Tribologi 38, pp.141-159. 

 

 

 

 

Prediction of abrasive wear behavior of the poly-tetra-
fluoroethylene material using adaptive neuro fuzzy interface 
systems 
 
Dinesh Dhande 1*, Shirish Navale 1, D.P. Gaikwad 2, D.V. Wadkar 3, S.R. Patil 1, R.D. Nalawade 3, 
Mariyam J. Ghazali 4, W.B. Wan Nik 5 
 
1 Department of Mechanical Engineering, AISSMS College of Engineering, INDIA. 
2 Department of Computer Engineering, AISSMS College of Engineering, INDIA. 
3 Department of Civil Engineering, AISSMS College of Engineering, INDIA. 
4 Department of Mechanical & Manufacturing Engineering Faculty of Engineering & Built 
Environment, Universiti Kebangsaan Malaysia, MALAYSIA. 
5 Maritime Technology Department, Faculty of Ocean Engineering Technology and Informatics, 
Universiti Malaysia Terengganu, MALAYSIA. 
* Corresponding author: dydhande@aissmscoe.com 
 

KEYWORDS  ABSTRACT 

 
Abrasive Wear 
ANFIS 
Pin on disc 
Fuzzy logic 
PTFE   
Wear 
 

 

The process of estimating wear rates for composites is 
nonlinear and complex. Artificial intelligence (AI)-based 
expert systems, such as artificial neural networks (ANNs) 
and fuzzy inference systems (FIS), possess several useful 
characteristics that make them suitable for modeling 
nonlinear systems. However, the accuracy of the ANN 
prediction is hindered if the input variables are unexpectedly 
altered. The Adaptive Neuro-Fuzzy Inference System (ANFIS) 
combines the adaptability and learnability of ANNs with the 
verbal expressions of the FIS. This study proposes an ANFIS 
sub-clustering-based prediction model for the abrasive wear 
rate of Polytetrafluoroethylene (PTFE), which is widely used 
in various applications. The experimental wear of the PTFE 
material was estimated by varying the load, speed, and 
sliding distance using in-house tribometer, and the extracted 
data was used to design an ANFIS model for wear prediction. 
The designed model was tested on a dataset that was not 
used to build the model. The regression analysis of the 
proposed model exhibited high prediction capability, with an 
R2 value of 0.999 and a mean squared error of 0.39%.  
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1.0 INTRODUCTION 
Soft computing technologies used regularly in the engineering business for evaluating 

important features include artificial neural networks and fuzzy logic circuits. This is due to the 
fact that these computer models can read a wide variety of challenging issues at a much lower 
operational cost than standard arithmetic models. Wear can occur for a variety of reasons, 
including adhesive, abrasive, fatigue, and fretting. The toughness or performance of composites, 
coatings, tools, aerospace crafts, bone, and hip implants, and automotive parts is significantly 
impacted by abrasive wear. Wear is often studied experimentally (Bowden,1986) due to the wide 
variety of process variables that might affect it, including sliding distance, speed, material 
properties, and surface roughness. For the purpose of investigating wear analysis, numerous 
mathematical modeling strategies have been proposed. To investigate wear analysis, several 
mathematical modeling strategies have been proposed (Popov et al., 2007; Vakis et al., 2018) 
These methods include continuum mechanics (Johnson, 1985; Hills and Nowell, 1994), analysis 
(Goryacheva, 1998; Barber, 2018), stochastic (Nayak, 1971), multidimensional (Li et al.,2004), 
atomic and molecular kinetics (Bhushan et al.,1995), finite element modelling (Yevtushenko and 
Grzes, 2010), boundary element system (Xu and Jackson, 2019), dimension reduction method 
(Argatov and Fadin , 2010), and symptom modelling (Ali et al., 2014; Bucholz et al., 2014). 
However, due to the complexity of surface phenomena, the understanding of them through 
mathematical modeling is still somewhat limited. 

The use of AI in tribology has become increasingly common in recent years. Jones et al., 1997 
used artificial neural networks to simulate wear patterns and forecast durability statistics. 
Artificial neural networks accurately forecast wear behavior and provide a time-saving 
alternative to traditional testing methods. Among the many areas where this method has been put 
to use are the following: polymer composite wear (Friedrich et al., 2002; Jiang et al., 2007; El Kadi, 
2006; Veltan et al.,2000), tool wear (Quiza  et al., 2008), on-line wear rating (Ghasempoor et 
al.,1998), brake performance (Aleksendrić , 2009 and Bao et al., 2012), polymer corrosion (Jiang 
and Zhang, 2012), wheel and rail wear (Shebani and Iwnicki, 2012), the wear rate of copper-
aluminum nano-composites (Fathy and Megahed, 2012), and the wear rate of heat-treated 
aluminum-clay composites (Agbeleye et al., 2018). Bhaumik et al., 2019 devised a method for 
determining the friction coefficient with different friction modifiers. Argatov and Chai, 2012, 
recently utilized this method to estimate sliding wear. Similarly, Dhande et al., 2021, employed 
ANN and RSM techniques to predict abrasive wear. 

ANN prediction models save time, money, and resources by cutting down on the number of 
experiments that need to be done. But, when input variables are unexpectedly changed, the 
pattern recognition ability of the ANN can be compromised, leading to inaccurate or 
unpredictable results. In some cases, the ANN may even converge to a very large negative or 
positive peak value, leading to an interpolation issue. Fuzzy rules, which can be developed 
separately, can be used to limit the rate of change in nonlinear behavior. Referring to ANNs in this 
way can help us fine-tune our membership criteria and guidelines (MFs). A Fuzzy Inference 
System (FIS) is responsible for linking inputs with outcomes. An ANFIS is based on the structure 
of a first-order Takagi-Sugeno (T-S) type fuzzy inference system (Nguyen et al., 2002). Without 
learning capabilities, FIS cannot select the best network design that minimizes the output error 
cost function. The MFs of the structure are then fine-tuned using artificial neural networks with 
several layers (Jagtap and Pillai, 2014). Because of its adaptability and capacity for learning, ANFIS 
can combine the linguistic abilities of FIS with those of ANNs. 
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The ANFIS is an accurate artificial intelligence (AI) method for modelling the characterization 
of dry surface contacts, as demonstrated by its evaluation of wear between alloyed steel and 
reinforced plastic (Vlădăreanu et al., 2018). In this study, FISs for the ANFIS model are generated 
using three distinct optimization strategies: sub-clustering, fuzzy c-means, and grid partitioning. 
To accurately model the wear behavior of a certain material, such as hardened steel, a predictive 
AI model can be used. While ANFIS, FIS, and ANNs all performed admirably in accuracy tests, 
ANNs ultimately emerged as the best solution (Alambeigi et al., 2016). For evaluating the wear 
behavior of GFRP composites under various concentrations of materials and speeds, Yilmaz et al., 
2022 proposed a prediction model based on ANFIS sub-clustering. Gangwar et al., 2021recently 
used ANFIS to assess the wear characteristics of a boron carbide and molybdenum disulfide 
reinforced matrix. The proposed ANFIS model found the optimum concentrations and operating 
conditions to achieve the lowest wear. 

This research aims to quantify the abrasive wear that occurs during sliding under different 
conditions of load, speed, and sliding distance. Experimental results and estimating models for 
ANNs are often compared in the existing literature. The literature on the use of ANFIS for 
predicting wear rate is scarce, though. Wear behavior prediction of polytetrafluoroethylene 
(PTFE) under various loads, sliding distances, and speeds is proposed using a sub-clustering-
based prediction model. 

 
 

2.0 METHODOLOGY 
 

2.1  Experimental Work 
The measurements were carried out using an in-house tribometer, following ASTM G99 

standards (Figure 1). The testing system consisted of a vertically fixed pin and a horizontally 
rotating circular disc, with the cylindrical pin (30mm length, 8mm diameter) as the research 
specimen (Figure 2). The pin was made from Polytetrafluoroethylene (PTFE) and its material 
properties are listed in Table 1. The disc was prepared by slicing a rod with an initial diameter of 
140mm into 11mm slices, and its surface was finished with 600-grit sandpaper. The pin was kept 
in contact with the disc under a constant load, applied by a pin carrying the weight of the arm. 
Prior to each test, both the pin and disc were cleaned. The disc was rotated by a PMDC motor 
controlled by a speed-control unit, which included a thermistor-driven potentiometer and an AC 
to DC power transformer. 

 
Figure 1: Experimental test setup. 
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Figure 2: Specimen PTFE cylindrical pin. 

 
Table1: Material properties of PTFE. 

Property Value 
Specific gravity 2.15 g/cm3 
Elasticity modulus 490-600 Mpa 
Coefficient of friction 0.06-0.1 
Thermal conductivity 0.251 W/(m.K) 
Hardness 50-65 (Type D) 

 
 
The volumetric wear of the pin was determined using a digital scale (TAPSON 200T, resolution of 
0.1mg), while length loss was determined using a micrometer (resolution of 0.02mm). The device 
was checked for accuracy before and after each test. The volume loss of the pin was estimated 
using an empirical relation (equation 1), which relates the initial and final sample weights and the 
sample density, where 𝑊1 is the initial sample weight, 𝑊2 is the final sample weight, and 𝜌  is the 
sample density.  

 
The tests were conducted in dry conditions with various input parameters, including load, 

sliding speed, and sliding distance, as shown in Table 2. The tests were repeated three times, with 
the average of the results used for analysis. The normal load was varied from 4.905N (0.5 kg) to 
24.525N (2.5kg) to achieve significant weight loss. The sliding velocity was independently 
determined by varying the radius of the sliding track, ranging from 0.125m/s to 2.7m/s. An 
increase in temperature was observed with increasing sliding distance, but no actual temperature 
measurements were taken. 

 
 
 
 
 
 

Wear volume (V) =
𝑊1 − 𝑊2

𝜌
 (1) 
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Table 2: Test Parameters. 
Parameter Value(s) 
Normal load (N) 4.905, 9.81, 14.715,19.620, 24.525 
Disk speed (RPM) 250, 500, 750, 1000, 1250 
Sliding velocity (m/s) 0.125 to 2.70 
Wear track radius (mm) 25 to 60 
Pin material PTFE 
Disk material Mild Steel 

 
2.2  ANFIS Structure 
The ANFIS is one of the most well-known examples of a hybrid intelligent neuro-fuzzy inference 
structure (Jang, J.-S. R., 1993) and it employs a five-layer architecture to learn relationships 
between input and output data and then use those relationships to determine the optimal 
distribution of membership functions (MFs). Figure 3 depicts the ANFIS's overall layout and 
functionality. Each tier has several nodes, each of which has its own node function. The nodes with 
static parameter settings (circles) are contrasted with the adaptive nodes (squares), where the 
settings are subject to change. The output data from this layer's nodes will be the input for the 
subsequent layer. 
The fuzzy interface system (z) constitutes two inputs (x, y) and one output (z).  In a first order 
Sugeno fuzzy model, the typical if-then rules are as follows: 
 

)2(then,isandisIf 111111 cynxmfQyPx ++=  

)3(then,isandisIf 222222 cynxmfQyPx ++=  

 
where P1, P2, Q1, Q2 denote membership values of input variables (x , y) ;  and m1, n1, c1, and m2, 
n2, c2 are parameters of the output function f1 and f2, respectively, also called the consequential 
parameters. The structure is built with the following layers: 
 

 
Figure 3: ANFIS structure. 
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Layer 1: An individual variable in the input language is represented by one of the adaptable nodes 
in the first layer. Following is a definition of the node function: 

)4(21,ifor1 == (x)μO Ai,i  

)5(43,ifor21 == − (y)μO B,i  

In this case, the output of the ith node in the Nth layer is denoted by On,i, where Pi or Qj is the 
linguistic label. The x and y variables are the inputs to the node. Assuming a Gaussian function is 
used for the MF here: 
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 are the appropriate parameters for the variable Gaussian function. The types and 
numbers of membership functions affect the premise parameters, which are also called first-
layer parameters. 

Layer 2: As shown in Figure 1, the nodes of the second layer are all represented by circles and 
are fixed. The strength of the next layer's firing is calculated by multiplying the input signals by 
this factor. 

)7(21,ifor2 === iBiAi,i (y)μ(x)μO   

where the output, ωi, represents the rule's efficacy in triggering an action.  

Layer 3: Every node in the third layer (also called the normalized layer) is shown in Figure 1 as a 
circle labelled "N," indicating that it is a fixed node. Normalized firing strength at a node can be 
calculated by dividing its firing strength by the total number of rules. 
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Layer 4: As shown in Figure 1, every single node is an adaptive node in this layer. Following is a 
description of the node's function. 

(9)1,2ifor,4 == iii fO   

where fi represents the fuzzy if-then rules given by (1) and (2). 
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Layer 5: The final layer consists of fixed nodes whose sole purpose is to add up the signals at 
their inputs. 

)10(,5 out
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where fout is the result that was inferred by the ANFIS. The sum of the errors in the provided 
training data for this ANFIS multilayer network (with n entries) is determined by the formula: 
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Where, Ti is the expected result of the ith entry, fouti is the result of operating the ANFIS on 
the ith entry, and Ei is the error for the ith entry in the given training data set. The ANFIS output 
fouti is a linear combination of the consequent parameters {mi, ni, ci} if the premise parameter 
{ai, ci} is in a steady state, as shown below (Jang J-SR, 1993; Jang J-SR, Chuen-Tsai, 1995): 

Where Ti is the target value for the ith entry, fouti is the value obtained after implementing the 
ANFIS to it, and Ei is the error for the ith entry in the given training data set. If the premise 
parameters {ai, ci} are in a steady state, as shown below, the ANFIS output fouti is a linear 
combination of the consequent parameters {mi, ni, ci}. 
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The matrices are expressed as follows when Eq. (11) is provided with N training data:                     
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where θ represents an unidentified matrix of order M  1, and M is the total number of parameters 
in the ensuing sets. If N data sets denoted by P were imported into the adaptive network, then ' f’' 
is a output vector of the network having size P  1 with N elements, and B represents the vector 
of order P  M in this case. According to the least-squares-estimator, the equation for is as follows: 

( ) fBBB TT 1* −
=                                                              (14) 

where BT is the transpose of B and B-1 is the inverse of B. 
The ANFIS training algorithm was executed using Matlab R2017a's fuzzy inference toolbox to 

predict the abrasive wear rate. The process involves four distinct steps. Firstly, compiling an event 
data array that includes both input and output data. Secondly, importing the training data and 
verifying the results with the data provided using the ANFIS editor. The third step involves 
initializing the fuzzy inference system (FIS) by specifying the number and type of membership 
functions (MF) to be used for nonlinear function modeling. ANFIS employs a feed-forward 
network to discover fuzzy decision rules that perform well on the input-output data set by 
generating adjustable MF parameters. Since optimizing the adaptive parameter is critical to the 
adaptive system, this study uses the ANFIS approach that utilizes a hybrid learning algorithm that 
is more efficient than the traditional backpropagation algorithm in approximating the true values 
of the model parameters. Hybrid methods offer several benefits, including finding a good set of 
consequent parameters using two techniques: (i) gradient descending and (ii) the least-squares 
method. Subsequently, ANFIS trains the input data, and if the error tolerance between the training 
and testing data's output is within the required range, the training process will end automatically. 
Otherwise, ANFIS will revert to generating FIS until an adequate match is obtained. 
 
2.3  Proposed ANFIS Model Development 

The Fuzzy Logic Toolbox's five primary GUI tools for working with fuzzy inference systems are 
the Fuzzy Inference System (FIS) Editor, the Membership Function Editor, the Rule Editor, the 
Rule Viewer, and the Surface Viewer. If you make a modification to the FIS, it will automatically 
update in all other active GUIs. The dynamic linking between these interfaces makes this possible. 
In this investigation, a Rule-Based Mamdani-Type Fuzzy Modeling (RBMTF) strategy based on a 
Multi-Input-Multi-Output (MIMO) Fuzzy algorithm was used to model the tribological 
performance of the PTFE material in terms of wear loss. With the help of MATLAB's Fuzzy Logic 
Toolbox, the RBMTF was created, taking as inputs the parameters of normal load, sliding speed, 
and sliding distance, and producing the wear volume as an output parameter using the IF-THEN 
RULES. The results of the experiment were simulated using the graphical user interface (GUI) in 
MATLAB R2017a. The proposed MIMO fuzzy algorithm for wear performance prediction is 
depicted conceptually in Figure 4. 
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Figure 4: Proposed MIMO fuzzy algorithm. 

 
The wear performance of PTFE material was analyzed using a MATLAB-based ANFIS model. 

According to Figure 5, 27 rules were written in a rule editor to improve the model's layout. The 
available experimental datasets' sixty input values were divided into a training set and a testing 
set, and then an ANFIS model for the predictions was developed. The dataset consisted of a total 
of 60 data points, comprising three readings for each set. Roughly 70% of the dataset (about 40 
data points) was chosen at random to serve as a training as well as testing sample, while the 
remaining 30% (about 20 data points) was used to evaluate the performance of the ANFIS model. 
Additionally, the fuzzy membership function editor can be obtained by inputting the following 
three parameters into the view membership command on the main menu: normal load, sliding 
speed, and sliding distance. Inputs and outputs in this model are defined using the triangular 
membership function. The output is the volume of wear. Low, medium, high, and highest are the 
four possible values for the model's inputs, and the model's output parameter, wear volume. Table 
3 lists the architecture of ANFIS and the training parameters. 
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Figure 5: Proposed ANFIS model for Wear volume prediction with 3 inputs and one output. 

 
Table 3: ANFIS Architecture and training parameters. 

Number of nodes 78 

Number of linear parameters 27 

Number of nonlinear parameters  27 

Total number of parameters 54 

Number of training data pairs 20 

Number of fuzzy rules 27 

 
 
3.0 RESULTS AND DISCUSSION  
 
3.1  Experimental Results 

Figure 6 depicts the results of an abrasive wear volume test as a function of sliding distance 
and load. This dataset was used to train and validate an ANFIS model. It has been observed that 
the wear volume increases as the load and sliding distance increase.  As the load on the pin increases, 

the contact area between the pin and its mating surface also increases. This increased contact area leads 

to higher frictional forces and pressure between the two surfaces, which can cause the pin to deform and 

wear out faster.  
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Sliding distance refers to the total distance the pin slides across its mating surface during 
operation. As the sliding distance increases, the duration of contact between the pin and the disc 
also increases. This prolonged contact causes the pin's surface to become rougher, which leads to 
an increase in frictional force. The increased frictional force results in an increase in wear volume 
over time. As the load and sliding distance both increase, the pin remains in contact with the disc 
for a longer duration with elevated contact pressure, resulting in increased friction forces. 
Therefore, with an increase in both load and sliding distance, the level of wear intensifies, as 
evidenced by Figure 6. 
 

Figure 6: Variation of abrasive wear volume against sliding distance for different loads. 
 
3.2  ANFIS Results 

Figure 7 is a visual representation of the If-Then rule viewer for the wear performance, which 
has three inputs and one output, and the rule editor in which the twenty-seven corresponding 
fuzzy rules were viewed. 

Utilizing the established ANFIS framework, graphs of the specific wear rate as a function of the 
response surface are obtained for the interaction terms. The ANFIS model's ability to predict a 
change in wear rate in response to variations in both speed and normal load are shown in Figure 
8. It is evident that, the wear behavior of PTFE material is enhanced when a larger sliding distance 
is combined with a lighter normal loading condition. In this case, the lower speed (400 rpm) and 
higher load result in a lower wear rate. However, the wear rate increases as the speed increases. 
There is an initial peak in wear at maximum load (25 N), followed by a gradual decrease. 

Figure 9 is a surface plot illustrating the relationship between the input parameters Load and 
sliding distance and the output parameter Wear volume. When the sliding distance is small (500 
mm), the wear volume is small for all load values, but it grows with increasing sliding distance 
before levelling off. Under a load of 25 N, the wear is at its worst. 
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Figure 7: Prediction of the output values through if-then rule viewer for wear rate. 

 

 
Figure 8: Surface plot for interaction between load, speed and wear volume. 

 



Jurnal Tribologi 38 (2023) 141-159 

 153 

 
Figure 9: Surface plot for interaction between Load, Sliding distance and wear volume. 

 
Wear loss of PTFE material is shown clearly in Figure 10 as a result of the interaction effect of 

sliding distance and sliding speed. The highest rotational speed (2000 rpm) and the highest wear 
rate are both readily apparent (1000 rpm). While wear is negligible at small sliding distances and 
speeds, it becomes a significant problem as both these variables are increased. It was discovered 
that reducing the sliding speed and increasing the sliding distance was necessary to remove the 
wear loss and increase the specific wear rate. 

 

.  
Figure 10: Surface plot for interaction between sliding distance, speed and wear volume. 
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It was observed that the neuro-fuzzy algorithm could predict the wear rate effectively. Table 
4 compares the predicted and the experimental wear rate values for the checking data after 
training by ANFIS.  

Table 4: Comparison of experimental and ANFIS predicted results. 

Sr. 
No 

Motor 
Speed 
(RPM) 
  

Load 
(N) 
  

Sliding 
Distance 
(m) 

Expt. 
Wear 
Volume 
(OE) 
(mm3) 

ANFIS 
Predicted 
Wear Volume, 
(OP) 
(mm3) 

Absolute 
error 
OE-OP 

Squared  
Error 
OE-OP2 

1 250 4.905 432 0.58 0.5778 0.0021 4.67E-06 

2 250 9.81 432 2.56 2.6645 0.1045 0.0109 

3 250 14.71 432 2.6 2.6324 0.0324 0.0010 

4 250 19.62 432 4.05 4.0259 0.0240 0.0005 

5 250 24.52 432 5.77 5.7792 0.0092 8.5229E-05 

6 500 4.905 864 0.791 0.7926 0.0016 2.68632E-06 

7 500 9.81 864 2.65 2.7066 0.0566 0.003205371 

8 500 14.71 864 6 5.9379 0.0620 0.003856286 

9 500 19.62 864 8 8.0711 0.0711 0.005067162 

10 500 24.52 864 12 11.9726 0.0273 0.00074857 

11 750 4.905 1300 1.02 1.0785 0.0585 0.003424239 

12 750 9.81 1300 5.49 5.4602 0.0297 0.000885598 

13 750 14.71 1300 8.42 8.6241 0.2041 0.041667424 

14 750 19.62 1300 11.5 11.4628 0.0372 0.00138384 

15 750 24.52 1300 16 16.0142 0.0142 0.000203063 

16 1000 4.905 1730 1.81 1.7824 0.0275 0.000761484 

17 1000 9.81 1730 8.28 8.3391 0.0591 0.003497658 

18 1000 14.71 1730 14.1 14.0740 0.0259 0.00067496 

19 1000 19.62 1730 18.6 18.5909 0.0091 8.22649E-05 

20 1000 24.5 1730 25.8 25.8034 0.0034 1.20409E-05 

      MSE 0.003905807 

 
Figure 11 exhibits the graphical comparison between experimental and ANFIS predicted 

results. The R2 value of the regression model is 0.999 which is a good indicator of accurate 
predictive model. 
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Figure 11:  Graphical comparison of experimental and ANFIS predicted results. 
 

The regression analysis is carried out by estimating mean squared error which is given by 
below Equation 15. 
 

Mean squared error (MSE) =
∑ (𝑂𝐸 − 𝑂𝑃)2𝑁

𝑖=1

𝑁
 (15) 

As seen from Table 4, the overall mean squared error of the proposed model is 0.003905807 
or 0.39%. As the value of MSE is lower, the proposed ANFIS model is performing best. Figure 11 
depicts the relationship between experimental wear volume and ANFIS predicted wear volume 
for sample 20 data points. 
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Figure 12: Comparison of experimental and ANFIS predicted wear volume. 

 

CONCLUSIONS 
In this work, an in-house Tribometer is utilized to conduct an experimental study of PTFE's 

tribological performance. In order to predict the wear rate for different loads, speeds, and sliding 
distances, an adaptive neuro-fuzzy model was developed using the collected experimental data. 
The following conclusions can be drawn from the analysis of the data collected and used in this 
study. 

1. There is a direct relationship between the load, speed, and sliding distance that are inputs 
and the wear rate. At light loads and slow speeds, wear is reduced. 

2. The specific wear rate can be predicted with a 98.99% degree of accuracy using ANFIS 
modelling, indicating that the predicted values of specific wear rate are in good proximity 
with the experimental values. 

3. Finally, the response surface plot shows that the wear performance of the PTFE material 
can be improved by decreasing the sliding speed and normal load, respectively, to decrease 
wear loss. 
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