Home > View All Issues > Volume 13 (June 2017) > Pages 36-71
Save to Mendeley |
Volume 13, June 2017, Pages 36-71
Synthesis
and tribological properties of graphene: A review
Parveen Kumar, M.F. Wani
Tribology Laboratory, Department of Mechanical Engineering, National Institute of Technology, Srinagar, Jammu & Kashmir, India
Abstract
The target of this review is to explore the
fundamental tribological behaviour of graphene, the first existing
two-dimensional (2-D) material and evaluate its performance as a
self-lubricating material. The importance and potential impact of
this new class of material was recognised by the whole scientific
community when the Noble prize was awarded to Geim and Konstantin
Novoselov for their discovery and development of graphene in 2010.
Graphene is the strongest material, chemically and thermally stable,
gas-impermeable, and atomically-thin. The fundamental tribological
behaviour of graphene and other 2-D materials under sliding
conditions is recently being studied. Mainly, the wear of graphene
has hardly been investigated. In this paper, the latest developments
in tribological applications of graphene, and preparation methods
are reviewed. It is shown that various graphene coatings, graphene
as lubricant additive and as reinforcement in metal matrix can be
successfully employed to decrease friction and wear in tribological
applications. A comprehensive review is provided with the aim to
analyse such properties of graphene. Moreover, the application of
graphene in the field of tribology for reducing friction and wear
for better lubrication will be explored.
Keywords
Graphene; Tribology; Friction; Wear and lubrication
Full Text
References
Avouris, P., &
Dimitrakopoulos, C. (2012). Graphene: synthesis and applications.
Materials Today,
15(3), 86-97.
Azman, S. S. N., Zulkifli, N. W. M., Masjuki, H., Gulzar, M., &
Zahid, R. (2016). Study of tribological properties of lubricating
oil blend added with graphene nanoplatelets.
Journal of Materials
Research, 31(13),
1932-1938.
Bartz, W. J. (1998). Lubricants and the environment.
Tribology
International,
31(1), 35-47.
Beerschwinger, U., Mathieson, D., Reuben, R. L., & Yang, S. J.
(1994). A study of wear on MEMS contact morphologies.
Journal of
Micromechanics and Microengineering,
4(3), 95.
Belmonte, M., Ramírez, C., González-Julián, J., Schneider, J.,
Miranzo, P., & Osendi, M. I. (2013). The beneficial effect of
graphene nanofillers on the tribological performance of ceramics.
Carbon,
61, 431-435.
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., ...
& De Heer, W. A. (2004). Ultrathin epitaxial graphite: 2D electron
gas properties and a route toward graphene-based nanoelectronics.
The Journal of
Physical Chemistry B,
108(52),
19912-19916.
Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K., Erdemir, A., &
Sumant, A. V. (2015). Macroscale superlubricity enabled by graphene
nanoscroll formation.
Science,
348(6239),
1118-1122.
Berman, D., Erdemir, A., & Sumant, A. V. (2013). Few layer graphene
to reduce wear and friction on sliding steel surfaces.
Carbon,
54, 454-459.
Berman, D., Erdemir, A., & Sumant, A. V. (2013). Reduced wear and
friction enabled by graphene layers on sliding steel surfaces in dry
nitrogen.
Carbon,
59, 167-175.
Berman, D., Erdemir, A., & Sumant, A. V. (2014). Graphene: a new
emerging lubricant.
Materials Today,
17(1), 31-42.
Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S. Y., Edgeworth,
J., ... & Kang, J. (2011). Oxidation resistance of graphene-coated
Cu and Cu/Ni alloy.
ACS Nano,
5(2),
1321-1327.
Chen, Z., Liu, Y., & Luo, J. (2016). Tribological properties of
few-layer graphene oxide sheets as oil-based lubricant additives.
Chinese Journal of
Mechanical Engineering,
29(2),
439-444.
Cho, D. H., Wang, L., Kim, J. S., Lee, G. H., Kim, E. S., Lee, S.,
... & Lee, C. (2013). Effect of surface morphology on friction of
graphene on various substrates.
Nanoscale,
5(7),
3063-3069.
Dou, X., Koltonow, A. R., He, X., Jang, H. D., Wang, Q., Chung, Y.
W., & Huang, J. (2016). Self-dispersed crumpled graphene balls in
oil for friction and wear reduction.
Proceedings of the
National Academy of Sciences,
113(6),
1528-1533.
Fan, X., Xia, Y., Wang, L., & Li, W. (2014). Multilayer graphene as
a lubricating additive in bentone grease.
Tribology Letters,
55(3),
455-464.
Farhanah, A. N., & Syahrullail, S. (2016). Evaluation of lubrication
performance of RBD palm stearin and its formulation under different
applied loads.
Jurnal Tribologi,
10, 1-15.
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri,
M., Mauri, F., ... & Geim, A. K. (2006). Raman spectrum of graphene
and graphene layers.
Physical review Letters,
97(18),
187401.
Filleter, T., & Bennewitz, R. (2010). Structural and frictional
properties of graphene films on SiC (0001) studied by atomic force
microscopy.
Physical Review B,
81(15),
155412.
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene.
Nature materials,
6(3), 183-191.
Ghaffarzadeh (2016).
Retrieved 15 May 2016, from idtechex.com.
IDTech Ex forecasts a $100 million Graphene Market in 2018.
Graphene Platform Supplies
the World’s largest Single Layer Single Crystal Graphene Samples.
Retrieved from graphenewiki.org/graphene, n.d. Web. 15 May 2016.
Gutierrez-Gonzalez, C. F., Smirnov, A., Centeno, A., Fernández, A.,
Alonso, B., Rocha, V. G., ... & Bartolome, J. F. (2015). Wear
behavior of graphene/alumina composite.
Ceramics
International,
41(6), 7434-7438.
Hass, J., De Heer, W. A., & Conrad, E. H. (2008). The growth and
morphology of epitaxial multilayer graphene.
Journal of Physics:
Condensed Matter,
20(32), 323202.
Holmberg, K., Andersson, P., & Erdemir, A. (2012). Global energy
consumption due to friction in passenger cars.
Tribology
International,
47, 221-234.
Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic
oxide.
Journal of the American
Chemical Society,
80(6), 1339-1339.
Kalin, M., Zalaznik, M., & Novak, S. (2015). Wear and friction
behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS
2 and CNT nanoparticles.
Wear,
332, 855-862.
Kim, H. J., & Kim, D. E. (2009). Nano-scale friction: a review.
International
Journal of Precision Engineering and Manufacturing,
10(2),
141-151.
Kim, H. J., Jang, C. E., Kim, D. E., Kim, Y. K., Choa, S. H., &
Hong, S. (2009). Effects of self-assembled monolayer and PFPE
lubricant on wear characteristics of flat silicon tips.
Tribology Letters,
34(1), 61-73.
Kim, H. J., Yoo, S. S., & Kim, D. E. (2012). Nano-scale wear: a
review.
International Journal of
Precision Engineering and Manufacturing,
13(9),
1709-1718.
Kim, K. S., Lee, H. J., Lee, C., Lee, S. K., Jang, H., Ahn, J. H.,
... & Lee, H. J. (2011). Chemical vapor deposition-grown graphene:
the thinnest solid lubricant.
ACS Nano,
5(6),
5107-5114.
Liang, H., Bu, Y., Zhang, J., Cao, Z., & Liang, A. (2013). Graphene
oxide film as solid lubricant.
ACS Applied
Materials & Interfaces,
5(13),
6369-6375.
Lin, J., Wang, L., & Chen, G. (2011). Modification of graphene
platelets and their tribological properties as a lubricant additive.
Tribology Letters,
41(1),
209-215.
Lin, L. Y., Kim, D. E., Kim, W. K., & Jun, S. C. (2011). Friction
and wear characteristics of multi-layer graphene films investigated
by atomic force microscopy.
Surface and Coatings
Technology,
205(20), 4864-4869.
Llorente, J., Román-Manso, B., Miranzo, P., & Belmonte, M. (2016).
Tribological performance under dry sliding conditions of
graphene/silicon carbide composites.
Journal of the
European Ceramic Society,
36(3),
429-435.
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun,
Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of
graphene oxide.
ACS Nano,
4(8),
4806-4814.
Marchetto, D., Held, C., Hausen, F., Wählisch, F., Dienwiebel, M., &
Bennewitz, R. (2012). Friction and wear on single-layer epitaxial
graphene in multi-asperity contacts.
Tribology Letters,
48(1), 77-82.
Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical
vapour deposition of graphene on copper.
Journal of Materials
Chemistry,
21(10), 3324-3334.
Meng, Y., Su, F., & Chen, Y. (2016). Supercritical Fluid Synthesis
and Tribological Applications of Silver Nanoparticle-decorated
Graphene in Engine Oil Nanofluid.
Scientific Reports,
6.
Mercurio, P., Burns, K. A., & Negri, A. (2004). Testing the
ecotoxicology of vegetable versus mineral based lubricating oils: 1.
Degradation rates using tropical marine microbes.
Environmental
Pollution,
129(2), 165-173.
Min, C., Nie, P., Song, H. J., Zhang, Z., & Zhao, K. (2014). Study
of tribological properties of polyimide/graphene oxide nanocomposite
films under seawater-lubricated condition.
Tribology
International,
80, 131-140.
Novoselov, K. S. (2011). Graphene: materials in the flatland (Nobel
Lecture).
Angewandte Chemie
International Edition,
50(31),
6986-7002.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y.,
Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in
atomically thin carbon films.
Science,
306(5696),
666-669.
Nuraliza, N., Syahrullail, S., & Faizal, M. H. (2016). Tribological
properties of aluminum lubricated with palm olein at different load
using pin-on-disk machine.
Jurnal Tribologi,
9, 45-59.
Park, J. S., Reina, A., Saito, R., Kong, J., Dresselhaus, G., &
Dresselhaus, M. S. (2009). G′ band Raman spectra of single, double
and triple layer graphene.
Carbon,
47(5),
1303-1310.
Park, S., & Ruoff, R. S. (2009). Chemical methods for the production
of graphenes.
Nature Nanotechnology,
4(4), 217-224.
Parvez, K., Wu, Z. S., Li, R., Liu, X., Graf, R., Feng, X., &
Müllen, K. (2014). Exfoliation of graphite into graphene in aqueous
solutions of inorganic salts.
Journal of the
American Chemical Society,
136(16),
6083-6091.
Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach
to stepwise synthesis of graphene oxide nanomaterial.
Journal of
Nanomedicine & Nanotechnology,
6(1), 1.
Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G.
C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength
for multiwalled carbon nanotubes and irradiation-induced
crosslinking improvements.
Nature Nanotechnology,
3(10), 626-631.
Penkov, O. V., Bugayev, Y. A., Zhuravel, I., Kondratenko, V. V.,
Amanov, A., & Kim, D. E. (2012). Friction and wear characteristics
of C/Si bi-layer coatings deposited on silicon substrate by DC
magnetron sputtering.
Tribology Letters,
48(2),
123-131.
Penkov, O. V., Lee, D. H., Kim, H., & Kim, D. E. (2013). Frictional
behavior of atmospheric plasma jet deposited carbon–ZnO composite
coatings.
Composites Science and
Technology,
77, 60-66.
Penkov, O. V., Pukha, V. E., Zubarev, E. N., Yoo, S. S., & Kim, D.
E. (2013). Tribological properties of nanostructured DLC coatings
deposited by C 60 ion beam.
Tribology
International,
60, 127-135.
Penkov, O., Kim, H. J., Kim, H. J., & Kim, D. E. (2014). Tribology
of graphene: a review.
International journal of
precision engineering and manufacturing,
15(3),
577-585.
Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal,
Y., & Balkus Jr, K. J. (2012). Hydrothermal synthesis of
graphene-TiO2 nanotube composites with enhanced photocatalytic
activity.
Acs Catalysis,
2(6),
949-956.
Prasai, D., Tuberquia, J. C., Harl, R. R., Jennings, G. K., &
Bolotin, K. I. (2012). Graphene: corrosion-inhibiting coating.
ACS Nano,
6(2), 1102-1108.
Pu, J., Wan, S., Zhao, W., Mo, Y., Zhang, X., Wang, L., & Xue, Q.
(2011). Preparation and tribological study of functionalized
graphene–IL nanocomposite ultrathin lubrication films on Si
substrates.
The Journal of Physical
Chemistry C,
115(27),
13275-13284.
Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A.,
Herrera-Alonso, M., Piner, R. D., ... & Nguyen, S. T. (2008).
Functionalized graphene sheets for polymer nanocomposites.
Nature
Nanotechnology,
3(6), 327-331.
Rasheed, A. K., Khalid, M., Javeed, A., Rashmi, W., Gupta, T. C. S.
M., & Chan, A. (2016). Heat transfer and tribological performance of
graphene nanolubricant in an internal combustion engine.
Tribology
International,
103, 504-515.
Rasheed, A. K., Khalid, M., Walvekar, R., Gupta, T. C. S. M., &
Chan, A. (2016). Study of graphene nanolubricant using
thermogravimetric analysis.
Journal of Materials
Research,
31(13), 1939-1946.
Sasaki, N., Okamoto, H., Itamura, N., & Miura, K. (2010).
Atomic-scale friction of monolayer graphenes with armchair-and
zigzag-type edges during peeling process.
e-Journal of Surface
Science and Nanotechnology,
8, 105-111.
Schwarz, U. D., Zwörner, O., Köster, P., & Wiesendanger, R. (1997).
Quantitative analysis of the frictional properties of solid
materials at low loads. I. Carbon compounds.
Physical review B,
56(11), 6987.
Senatore, A., D'Agostino, V., Petrone, V., Ciambelli, P., & Sarno,
M. (2013). Graphene oxide nanosheets as effective friction modifier
for oil lubricant: materials, methods, and tribological results.
ISRN Tribology,
2013.
Shankman, R. S. (2015).
U.S. Patent No. 9,023,308.
Washington, DC: U.S. Patent and Trademark Office.
Shin, Y. J., Stromberg, R., Nay, R., Huang, H., Wee, A. T., Yang,
H., & Bhatia, C. S. (2011). Frictional characteristics of exfoliated
and epitaxial graphene.
Carbon,
49(12),
4070-4073.
Shioyama, H., & Akita, T. (2003). A new route to carbon nanotubes.
Carbon,
41(1),
179-181.
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal,
S. (2011). Graphene based materials: past, present and future.
Progress in
Materials Science,
56(8), 1178-1271.
Sivudu, K. S., & Mahajan, Y. (2012). Mass production of high quality
graphene: An analysis of worldwide patents.
Electronic article
published by Nanowerk. June 28.
Smolyanitsky, A., Killgore, J. P., & Tewary, V. K. (2012). Effect of
elastic deformation on frictional properties of few-layer graphene.
Physical Review B,
85(3), 035412.
Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production,
properties and potential of graphene.
Carbon,
48(8),
2127-2150.
Soler, V. M. F. (2014). Fabrication
and Characterization of Macroscopic Graphene Layers on Metallic
Substrates
(Doctoral dissertation, Universitat de Barcelona).
Spreadborough, J. (1962). The frictional behaviour of graphite.
Wear,
5(1), 18-30.
Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M.,
Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. (2006).
Graphene-based composite materials.
Nature,
442(7100),
282-286.
Tabandeh-Khorshid, M., Omrani, E., Menezes, P. L., & Rohatgi, P. K.
(2016). Tribological performance of self-lubricating aluminum matrix
nanocomposites: role of graphene nanoplatelets.
Engineering Science
and Technology, an International Journal,
19(1),
463-469.
Taghioskoui, M. (2009). Trends in graphene research.
Materials Today,
12(10), 34-37.
Tai, Z., Chen, Y., An, Y., Yan, X., & Xue, Q. (2012). Tribological
behavior of UHMWPE reinforced with graphene oxide nanosheets.
Tribology Letters,
46(1), 55-63.
Tang, L., Li, X., Ji, R., Teng, K. S., Tai, G., Ye, J., ... & Lau,
S. P. (2012). Bottom-up synthesis of large-scale graphene oxide
nanosheets.
Journal of Materials
Chemistry,
22(12), 5676-5683.
Tasis, D., Papagelis, K., Spiliopoulos, P., & Galiotis, C. (2013).
Efficient exfoliation of graphene sheets in binary solvents.
Materials Letters,
94, 47-50.
Tsoukleri, G., Parthenios, J., Papagelis, K., Jalil, R., Ferrari, A.
C., Geim, A. K., ... & Galiotis, C. (2009). Subjecting a graphene
monolayer to tension and compression.
Small,
5(21),
2397-2402.
Wani, M. F., & Anand, A. (2010). Life-cycle assessment modelling and
life-cycle assessment evaluation of a triboelement.
Proceedings of the
Institution of Mechanical Engineers, Part J: Journal of Engineering
Tribology,
224(11), 1209-1220.
Wassei, J. K., Mecklenburg, M., Torres, J. A., Fowler, J. D., Regan,
B. C., Kaner, R. B., & Weiller, B. H. (2012). Chemical vapor
deposition of graphene on copper from methane, ethane and propane:
Evidence for bilayer selectivity.
Small,
8(9),
1415-1422.
What is Graphene (2016). Retrieved 17 May 2016, from Nanjing XFNANO
Materials Tech Co, Ltd.
Willing, A. (2001). Lubricants based on renewable resources–an
environmentally compatible alternative to mineral oil products.
Chemosphere,
43(1), 89-98.
Wintterlin, J., & Bocquet, M. L. (2009). Graphene on metal surfaces.
Surface Science,
603(10),
1841-1852.
Won, M. S., Penkov, O. V., & Kim, D. E. (2013). Durability and
degradation mechanism of graphene coatings deposited on Cu
substrates under dry contact sliding.
Carbon,
54, 472-481.
Woo, Y., & Kim, S. H. (2011). Sensitivity analysis of plating
conditions on mechanical properties of thin film for MEMS
applications.
Journal of Mechanical Science and Technology,
25(4),
1017-1022.
Xiao, Y., Shi, X., Zhai, W., Yao, J., Xu, Z., Chen, L., & Zhu, Q.
(2015). Tribological Performance of NiAl Self-lubricating Matrix
Composite with Addition of Graphene at Different Loads.
Journal of Materials
Engineering and Performance,
24(8),
2866-2874.
Xu, Z., Zhang, Q., Jing, P., & Zhai, W. (2015). High-temperature
tribological performance of TiAl matrix composites reinforced by
multilayer graphene.
Tribology Letters,
58(1), 3.
Yan, C., Kim, K. S., Lee, S. K., Bae, S. H., Hong, B. H., Kim, J.
H., ... & Ahn, J. H. (2011). Mechanical and environmental stability
of polymer thin-film-coated graphene.
ACS Nano,
6(3),
2096-2103.
Yao, J., Shi, X., Zhai, W., Ibrahim, A. M. M., Xu, Z., Chen, L., ...
& Wang, Z. (2014). The enhanced tribological properties of NiAl
intermetallics: combined lubrication of multilayer graphene and WS2.
Tribology Letters,
56(3),
573-582.
Yazdani, B., Xu, F., Ahmad, I., Hou, X., Xia, Y., & Zhu, Y. (2015).
Tribological performance of Graphene/Carbon nanotube hybrid
reinforced Al2O3 composites.
Scientific Reports,
5, 11579.
Young, R. J., Kinloch, I. A., Gong, L., & Novoselov, K. S. (2012).
The mechanics of graphene nanocomposites: a review.
Composites Science
and Technology,
72(12), 1459-1476.
Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., &
Ruoff, R. S. (2000). Strength and breaking mechanism of multiwalled
carbon nanotubes under tensile load.
Science,
287(5453),
637-640.
Zhang, J., Zhang, B., Xue, Q., & Wang, Z. (2012). Ultra-elastic
recovery and low friction of amorphous carbon films produced by a
dispersion of multilayer graphene.
Diamond and Related
Materials,
23, 5-9.
Zhang, Y., Small, J. P., Pontius, W. V., & Kim, P. (2005).
Fabrication and electric-field-dependent transport measurements of
mesoscopic graphite devices.
Applied Physics
Letters,
86(7), 073104.
Zhu, Q., Shi, X., Zhai, W., Yao, J., Ibrahim, A. M. M., Xu, Z., ...
& Zhang, Q. (2014). Effect of counterface balls on the friction
layer of Ni3Al matrix composites with 1.5 wt% graphene
nanoplatelets.
Tribology Letters,
55(2),
343-352.